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Phase synchronization of two systems with different dynamical parameters driven by a common external
signal is studied using a model of the photosensitive Belousov-Zhabotinsky reaction. Complex dynamics,
including chaos, arise when the external light intensity is periodically switched between two levels. Two
dynamical conditions are investigated here: (a) the two systems are driven between two limit cycles and (b)
both systems are driven between excitable and oscillatory states. Phase synchronization is achieved with both
Gaussian-distributed and dichotomous noise when the random variation is added to the duration of the periodic
forcing. In the case that noise is added to the intensity of the periodic forcing, perfect phase synchronization
is achieved with dichotomous noise, whereas only transient synchronization is observed with Gaussian-
distributed random variation. Studies with correlated noise show that the compound system may have two
attractors, one corresponding to the phase synchronized state and one to unsynchronized oscillations (lag-
synchronized or chaotic, depending on the parameters). This suggests that transient synchronization is due to
noise-induced transitions between the synchronized attractor and the neighborhood of a second invariant set
which may in some cases also be an attractor. The synchronization mechanism is also studied using a return
map.

1. Introduction

Synchronization phenomena have been studied in various
fields such as biology,1-10 physics,11-17 and chemistry,18,19 as
well as in a variety of technological contexts.20 In the case of
strong coupling, the motions in different subsystems can
completely mimic each other. To realize the synchronization
of two systems, one system can be used as a driving force to
drive the other (master-slave synchronization)21 or the two
systems can be mutually coupled (bidirectional).22 Recently, it
has been shown that if the synchronized systems have identical
dynamics then there is no essential difference between unidi-
rectional and bidirectional coupling.23 Using an external signal
to drive the two systems has also been investigated actively in
recent studies.1,11,18,24 The external signal can be periodic,
chaotic or random.18 Synchronization can sometimes be ob-
served in driven dynamical systems even in the absence of
coupling.1

In the past decade, methods for synchronizing chaotic systems
have attracted increasing interest, prompted by potential ap-
plications in secure communication12 and by research in
neuroscience, among other fields.2 For systems with different
structures or parameters, general definitions of synchrony have
been developed which do not require the two systems to behave
identically.25 In this study, we investigate phase synchronization
of two photosensitive Belousov-Zhabotinsky (BZ) reactions
subjected to a common square-wave light perturbation. Phase
synchronization is obtained when appropriate variables in two
systems reach their maxima or minima with negligible phase
delay. The amplitudes may on the other hand remain noncor-
related. Chemical reactions driven by a periodic perturbation
have been the subject of many experimental and computational

studies in the past 30 years.26-45 A number of studies on
periodically driven chemical reactions have reported the obser-
vation of entrainment and consecutive bifurcations leading to
chaos.34-40 Our recent study of the light-sensitive BZ reaction
with periodic and nearly periodic switching illustrates that not
only are the forcing frequency and amplitude important but that
the detailed waveform of the external forcing is also essential
in determining the behavior of a driven dynamical system.19

The addition of random variations to thedurationsof external
forcing pulses can synchronize two otherwise chaotic systems
which have the same dynamics.

Here we extend our earlier work to explore the feasibility of
using random variation to synchronize two systems with
different dynamics, oscillating at different amplitudes and
frequencies. Synchronization in both amplitude and phase of
two systems with different dynamics has been reported by
Parmananda and Jiang in a modeling study of electrochemical
corrosion.18 They found that when the two response systems
are at unequal parameter values and exhibiting different
dynamical behavior synchronization is achieved only for forcing
including a random element. A recent study on a forced two-
variable biological model system also shows that the noisy
switching between two states may tame chaotic phenomena and
favor synchronization.1

The constructive influence of random fluctuations will be
characterized in this study in two different ways: (a) the random
variation is added to theintensityof the external forcing or (b)
the random fluctuation is added to thedurationof the perturba-
tion. We consider both Gaussian-distributed and dichotomous
random variation. Moreover, two types of dynamical situations
are investigated here: (a) the two systems are driven between
two limit cycles or (b) both systems are driven between excitable
and oscillatory states. These switching protocols are easily
realizable experimentally in a photosensitive reaction.
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2. Model

As in our previous study,19 the model adopted here is a two-
variable Oregonator,46 modified to describe the photosensitive
BZ reaction47,48(the oxidation and bromination of malonic acid
by acidic bromate in the presence of metal catalyst Ru(bpy)3

2+).
The dimensionless form of the model using Tyson-Fife49 scaling
is

We will consider the case of two uncoupled copies of this
system, i.e.,i ) 1 and 2. Hereui and Vi are respectively the
dimensionless concentrations of HBrO2 and Ru(bpy)33+, fi is
an adjustable stoichiometric parameter,εi and qi are scaling
parameters, andφ represents the rate of bromide production due
to irradiation. This rate is proportional to the applied light
intensity.50-55 We decompose the photochemically induced
bromide production intoφ ) φ0 + φp + ê, whereφ0 represents
production at a background light intensity,φp represents an
applied perturbation, andê is a realization of a noise process
(Gaussian-distributed or dichotomous) with zero mean value.
When studying the effect of random variation in the duration
of the periodic forcing, we omitê.

We consider a square-wave perturbation, i.e.,φp ) (c, where
c is an adjustable constant. The durations of the positive and
negative perturbations are respectivelyT-c andT+c (see Figure
1). When studying the effect of random variation in theduration
of the periodic forcing,T+c ) T+ + µ and T-c ) T- + µ,
whereT+ andT- are preselected values of the durations of the
periodic forcing andµ is the (white or dichotomous) noise with
zero mean. As shown in an earlier studyT+c andT-c can each
be used as a bifurcation control parameter.19 Their values in
this study are selected in such a way that both systems exhibit
complex oscillations.

Random fluctuations in this study are generated as follows:
When white noise is investigated, Gaussian-distributed random
numbersê (or µ) with varianceκ are generated.κ is called the
noise strength in this study. Values outside the range of(2κ

are rejected to bound the variability of the random numbers.
Consequently, the random fluctuationê (or µ) varies between

2κ and -2κ with mean value zero. Dichotomous noise is
generated by randomly selectingê ) 2κ or ê ) - 2κ with equal
probability, and similarly forµ. In all cases, a new value of the
noise process is only generated whenφp switches from high to
low or vice versa. These noise processes are thus closely related
to periodic dichotomous noise.56

3. Results

3.1. Excitable-to-Oscillatory Switching.We first consider
the two systems switching between excitable and oscillatory
dynamics. The following parameter values are used: For system
1, ε1 ) 0.022,q1 ) 0.022, andf1 ) 1; for system 2,ε2 ) 0.021,
q2 ) 0.0223, andf2 ) 1. Here we chooseφ0 ) 0.07 andc )
0.03. Therefore,φ varies between the two levelsφ ) 0.04
(oscillatory) andφ ) 0.1 (excitable). Figure 2 presents the
bifurcation diagrams of the two systems under a common
periodic forcing, in whichT-c remains constant at 1.1 (dimen-
sionless time units) andT+c is varied. In the region of small
T+c, both systems exhibit complex oscillations with multiple
minima within each oscillation cycle. Detailed analysis using
stroboscopic plots reveals the development of chaos via qua-
siperiodic bifurcation in this region.57 There also exist two more
narrow parameter windows ofT+c within which both systems
display complex dynamical behavior. The sizes and positions
of the two windows are sensitive to the values ofεi andqi. It is
necessary to change both parameters in order to maintain overlap
between the chaotic windows of the two systems subject to the
same periodic forcing. The following studies of synchronization
are carried out in the regions of the bifurcation diagram in which
both systems exhibit complex oscillations. If at least one of the
two systems is chaotic in the absence of noise, sensitive
dependence on initial conditions guarantees exponential separa-
tion of trajectories. This makes synchronization of motion in
this region relatively difficult and thus an excellent test of our
methods.

Time series of the two systems calculated atT- ) 1.1 and
T+ ) 0.56 are shown in Figure 3a. Here Gaussian-distributed
random variations are added to the durationsT-c (T-c ) T- +
µ) andT+c (T+c ) T+ + µ) with strengthκ ) 0.2. The noise is
turned on att ) 200 (dimensionless time units). Figure 3a shows
that, shortly after the random process is turned on, the two
systems quickly merge to become indistinguishable on the scale
of this time series plot. More detailed examination shows that
their oscillation amplitudes are still different. The difference

Figure 1. Schematic drawing of the periodic forcing used in this study.
φ0 is the bromide production at an average light intensity. The light
intensity is varied periodically in such a way that the bromide production
rises toφ0 + c for T+c time units, then falls toφ0 - c for T-c time
units.

εi

dui

dt
)

(fiVi + φ)(qi - ui)

(qi + ui)
+ ui(1 - ui) (1)

dVi

dt
) ui - Vi (2)

Figure 2. Bifurcation diagrams of the two systems with respect to the
variation of T+c while T-c remains constant at 1.1. Other parameter
values are given in the text. Points plotted here are the minimum value
of V during its time evolution. The value ofV2 is offset by 0.06.
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between the two systems in variableV is plotted in Figure 3b.
As expected,V1 - V2 remains nonzero even after synchroniza-
tion, so that only phase synchronization is achieved here.
Nevertheless, the synchronization is quite impressive. With
smaller values ofκ, we observed transient synchronization: The
synchronized oscillations are frequently interrupted by an
unsynchronized state. Calculation of the leading Lyapunov
exponent58 indicates that the two systems are chaotic without
noise and then become nonchaotic at sufficiently large noise
strengths.

We emphasize here that synchronization is achieved in our
model in the absence of coupling between the systems. The
only commonality between the two systems is that they receive
a common inputφ. If φ is regular, the two systems do not in
general synchronize. In the range of parameters considered, the
attractor in the (ui, Vi, t) phase space can be a limit cycle, a
torus, or a chaotic state. In any of these cases, initial phase
differences are either maintained (limit cycle and torus) or
increased by the dynamics (chaos). However, random variation
in the illumination of appropriate strength creates strong
correlations between the phases of the driven systems.

Figure 4 presents the results under the influence of dichoto-
mous noise added, again, to the durations of the two phases of
the square-wave perturbation. In panel a, we see the projection
of a long trajectory onto the (V1, V2) plane in the absence of
noise. The trajectory fills a substantial portion of the accessible
part of the plane, indicating an almost complete lack of
synchrony. With a noise strength of 0.1 (panel b), the two

systems spend most of their time in the phase synchronized state
(near the lineV1 ) V2) with occasional excursions away from
this region. This is an example of transient synchronization.
As κ is increased, excursions become less and less frequent.
Eventually, phase synchronization between the two systems
becomes perfect (panel c). The amplitudes of the oscillations
still vary randomly because of the stochastic driving, but the
leading Lyapunov exponent is negative. Note that the value of
κ required for perfect phase synchronization is smaller with
dichotomous noise than it is for Gaussian-distributed noise.

Figure 3. (a) Time series of systems 1 (solid curve) and 2 (dashed
line). (b) Time evolution of the difference between these two systems
in the variableV. Gaussian-distributed noise is added to the durations
of the forcing (i.e., throughµ) and is turned on att ) 200. HereT- )
1.1, T+ ) 0.56, andκ ) 0.2. Other parameter values are given in the
text.

Figure 4. Projections of the dynamics onto the (V1, V2) plane at different
noise levelsκ: (a) 0, (b) 0.1, and (c) 0.15. b and c are projections after
the achievement of phase synchronization. Here dichotomous noise is
applied to the durations of the periodic forcing (i.e., throughµ). Other
parameter values are the same as those used in Figure 3. In b, we see
an example of transient synchronization: The two systems spend most
of their time near the lineV1 ) V2 (representing phase synchronization)
with occasional excursions away from this region. At higher noise
strengths (c), the trajectories stay in the synchronized state.
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The effects of dichotomous noise added to the light intensity
φ (i.e., throughê) are presented in Figure 5. The noise strength
κ equals 0.0075 in this calculation. Recall that during each
period of the forcing,ê remains constant; that is, a new random
intensity is only chosen at switching time. Time series plots in
Figure 5a show that the two systems quickly synchronize after
turning on the noise att ) 200, though the modulation of
oscillation amplitudes becomes more pronounced because of
the random variation of the light intensityφ. Figure 5b shows
the relationship between corresponding variables in the con-
centration space after the achievement of synchronized oscil-
lations. The evolution process of the two systems in the (V1,
V2) plane before the addition of noise is the same as that shown
in Figure 4a. In the presence of dichotomous noise, the complex
trajectory illustrated in Figure 4a collapses onto a narrow
trajectory, suggesting that the phases are now locked in a more-
or-less fixed relationship. When Gaussian-distributed noise is
used, qualitatively the same results are obtained. Moreover,
transient synchronization is observed whenκ takes smaller
values, as in the earlier case.

3.2. Oscillatory Systems.Here we chooseφ0 ) 0.03 andc
) 0.02. Therefore,φ varies between the two levels,φ ) 0.05
and 0.01, which are below the Hopf bifurcation thresholds both
of system 1, for whichε1 ) 0.02,q1 ) 0.022, andf1 ) 1, and
of system 2, for whichε2 ) 0.021,q2 ) 0.0225, andf2 ) 1.
Without periodic switching, both systems exhibit simple limit
cycles atφ ) 0.05 and at 0.01. Figure 6 presents the bifurcation
diagrams of the two systems with respect to the continuous
variation ofT+c, whereasT-c is kept constant at 1.1. WhenT+c

takes small values (<0.1), both systems exhibit quasiperiodic
oscillations and a transition to chaos via quasiperiodic bifurca-
tion. AboveT+c ) 0.3, both systems exhibit complex dynamical
behavior only in very narrow ranges.

We first add Gaussian-distributed random fluctuations to the
durations of the two phases of the forcing (i.e., throughµ). When
T- ) 1.1 andT+ ) 0.243, the above two systems exhibit
chaos, with positive leading Lyapunov exponents (λ1 ) 0.035).
The time evolution of the two systems is presented in Figure
7a, in which the noise was turned on att ) 200. After a short
transient period, the oscillation phases of the two systems come
into correspondence, although their oscillation amplitudes
remain different. The relationship between corresponding
variables in the concentration space is plotted in Figure 7 parts
b and c. In Figure 7b, the evolution process of the two systems
covers the full accessible region of the (V1, V2) plane, implying
that there does not exist a simple functional relationship between
their oscillation phases. However, after turning on noise (Figure
7c), this complex trajectory collapses onto a simple narrow one,
indicating that their phases are now locked in a more-or-less
fixed relationship. When dichotomous noise is added to the
duration of the forcing, qualitatively the same results as those
shown in Figure 7 are achieved. Again, the required noise
strengthκ for achieving perfect phase synchronization is smaller
than that for Gaussian-distributed random variations.

Figure 8 presents the result when Gaussian-distributed random
variations are added to the light intensityφ of the periodic
forcing. The noise strengthκ equals 0.0045 in this calculation.
Time series plots in this figure show that the two systems
quickly synchronize after turning on noise att ) 200, though
there is a pronounced modulation of the oscillation amplitudes
because of the random variation of the light intensityφ.
However, the synchronized state is occasionally interrupted by
a short period of unsynchronized oscillations. The occurrence
of this unsynchronized state becomes less frequent when the
noise strengthκ is increased. In this case, transient phase
synchronization is due to the small noise strength selected
because the same phenomenon also occurs when weak noise is
applied to the durations of the perturbation. In the version of
the model studied here, the maximum noise strengthκ is
restricted by the background light intensityφ0 and the periodic
forcing amplitudec, as the overall value ofφ must remain above
zero. Even with larger values ofκ, we are unable to achieve
perfect synchronization without any interruption.

Figure 5. (a) Time series of systems 1 (solid curve) and 2 (dashed
line); (b) projection of the dynamics onto the (V1, V2) plane after the
achievement of phase synchronization. Here dichotomous noise is
applied to the intensityφ of the periodic forcing (i.e., throughê) and
is switched on att ) 200 with noise strengthκ ) 0.0075 forT+c )
0.56 andT-c ) 1.1. Other parameter values are given in the text.

Figure 6. Bifurcation diagrams of the two systems with respect to the
variation of T+c while T-c remains constant at 1.1. Other parameter
values are given in the text. Points shown here are the minimum values
of V during their time evolution. The value ofV2 is shifted up by 0.05.
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Figure 9 shows the results when dichotomous noise is added
to the intensityφ of the periodic forcing. The plot of corre-
sponding variables in the (V1, V2) phase plane suggests that
perfect phase synchronization is achieved here. The evolution
process of the two systems in the concentration space before
the addition of noise is the same as that shown in Figure 7b,
covering the full accessible region of the (V1, V2) plane.

3.3. Correlated Noise.The noise processes studied thus far
are uncorrelated, in the same sense that the velocity in Brownian
motion is an uncorrelated random variable: A new value of
the appropriate random variable is selected every time the

forcing switches from high to low, or vice versa, without regard
to earlier values of the random variable. It is natural to wonder
what the effects of introducing correlations in successive random
trials might be. We have studied these questions briefly. Much
of what we have learned simply confirms the general picture
developed in earlier sections, although some of our results hint
at considerable dynamical richness.

We started with a very simple driving process: We used a
copy of our periodically driven system operating in an appropri-
ate parameter range to generate a chaotic signal. We sampled
this signal to obtain a sequence of values. A linear transforma-
tion was applied to this sequence to generate a sequence of
values of µ of appropriate amplitude and zero mean. This
process is not random, but a chaotic system does display
correlated fluctuations which have some of the properties of
noise. The results (not shown) are similar to those obtained with
uncorrelated noise. Stable phase synchronization can be achieved
provided the sampling time of the chaotic trajectory is not too
short. (If the sampling time is too short, then only a small part
of the chaotic trajectory is used to generate the fluctuations.
Thus, a slowly varying modulation is generated instead of a
sequence displaying chaotic fluctuations.)

The chaotic driving described above has rather complex
statistical properties. We therefore decided to study the effect
of fluctuations whose statistical properties are more easily
understood. We chose a two-state Markov chain.59 Again, the
duration of (e.g.) the negative perturbation was computed at
the moment of switching byT+c ) T+ + µ, where µ is a
random variable chosen randomly from the two values(2κ at
the onset of the perturbation. For simplicity, we can label the
two possible values ofµ by their signs, “+” and “-”. In a
Markov chain, the system “remembers” the last choice it made.
We then introduce a probabilityP+- of selecting “-” given
that the last choice was “+”, and P-+ of selecting “+” given
that the last choice was “-”. The probabilitiesP++ and P--
are then fixed by normalization. To make the mean fluctuation
zero, we constrainP-+ ) P+-, which in turn implies thatP++
) P-- ) 1 - P+-. Note that the caseP+- ) 0.5 corresponds
to the simple (uncorrelated) dichotomous noise process discussed
earlier. We proceeded similarly with the duration of the positive
perturbationT-c. Note that the two Markov chains (for each of
the two durations) are independent.

We already know the behavior forP+- ) 0.5: excellent phase
synchronization is achieved in this case. Similar results are
obtained whenP+- is close to 0.5. However, whenP+- is made
significantly different from 0.5 (i.e., as successive values ofµ
become either more correlated or anticorrelated), the synchro-
nized oscillations are interrupted by unsynchronized oscillations,
similar to the transient synchronization shown in Figure 8. The
interruptions occur more and more frequently and last longer
asP+- approaches either 0 or 1. At the extremes (P+- ) 0 or
1 exactly), we are back to periodic forcing. (IfP+- ) 1, this
periodic forcing alternates between two durations for each of
the positive and negative perturbations.) In some cases, espe-
cially if P+- ) 1, the bias introduced byµ may push the system
out of the chaotic regime and allow synchronization. However,
even in these cases, the dynamics may be complex. In some
cases, there may be two attractors for the composite system,
one in which the two reactors are phase synchronized and one
in which lag synchronization25 is observed (i.e., the two reactors
repeat the same pattern out of phase). Figure 10 gives an
example of these coexisting attractors. The only difference
between the two simulations is that the value of the dichotomous
noise variableµ was-0.2 when fluctuations were first added

Figure 7. (a) Time series of systems 1 (solid curve) and 2 (dashed
line); (b) projection of the dynamics onto the (V1, V2) plane in the
absence of noise; (c) projection after the achievement of phase
synchronization. Here Gaussian-distributed noise is applied to the
durations of the two phases of the forcing (i.e., throughµ). Noise of
strengthκ ) 0.12 is turned on att ) 200 (dimensionless time units).
T- ) 1.1, T+ ) 0.243, and other parameter values are given in the
text.

Phase Synchronization of BZ Systems J. Phys. Chem. A, Vol. 105, No. 31, 20017375



in panel a and+0.2 in panel b. Although this behavior is not
universal, we have here one way to understand intermittent
synchronization: There are two attractors for the composite
system, one of which corresponds to phase synchronization.
Under favorable conditions, the composite system spends most
of its time near the phase synchronized attractor. However, the
random process can cause transitions between this attractor and
an unsynchronized (or lag-synchronized) state.

A somewhat similar phenomenon is observed when we try
to apply our methods to a nonchaotic driving regime. Figure
11 shows the result of adding Gaussian-distributed noise to the
durations of the two phases of the perturbing square wave at
values of the parameters which result in regular oscillations.
After turning on noise att ) 200, the two systems require a
rather long transient period (depending on the realization of the
noise process and on the noise strength) to achieve a synchro-
nized state. However, the two systems in the same (or nearly
the same) locations of the phase space may respond to the same
perturbation differently because of the slightly different param-
eters. When this happens, noise will desynchronize the two
synchronized systems, causing flipping between synchronized
and unsynchronized states (see Figure 11). Noise thus causes
switching between two dynamical states of the compound
system, namely, synchronized and unsynchronized (or lag-
synchronized) oscillations. The synchronized state is clearly
always locally attracting at sufficiently large noise strength. The
unsynchronized state may under certain conditions (such as the

case illustrated in Figure 10 and, probably, in the case illustrated
in Figure 11) also be an attractor. In other cases, trajectories
are simply pushed onto the stable manifold of a repeller before
being sent back to the phase-synchronized attractor along the
repeller’s unstable manifold.

3.4. The Synchronization Mechanism.In an earlier paper,
we emphasized that it is necessary to analyze the trajectories in
phase space to understand synchronization in these systems.1

The key concept in this earlier study was a decomposition of
phase space into expanding and contracting regions. Although

Figure 8. Time series of systems 1 (solid curve) and 2 (dashed line). Gaussian-distributed random variations are added to the intensityφ of the
periodic forcing (i.e., throughê). Noise of strengthκ ) 0.0045 is switched on att ) 200. Other parameter values are the same as those used in
Figure 7. Here phase synchronization is occasionally lost.

Figure 9. Projection of the dynamics onto the (V1, V2) plane after the
achievement of phase synchronization. Here dichotomous noise of
strengthκ ) 0.004 is applied to the intensityφ of the periodic forcing
(i.e., throughê). Other parameter values are the same as those employed
in Figure 7.

Figure 10. Time series of systems 1 (solid curve) and 2 (dashed line)
calculated at different initial values ofµ: (a) -0.2 and (b) 0.2. Here
dichotomous noise is applied to the durations of the periodic forcing
(i.e., throughµ) and is turned on att ) 65. Other parameter values are
the same as those used in Figure 3. The dichotomous “noise” is
generated by a Markov process withP+- ) 1.
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there are some important qualitative differences between the
Novak-Tyson cell cycle model and the light-sensitive Orego-
nator, a similar style of analysis turns out to be helpful here.

In the chaotic regime, the attractors for the switched Orego-
nators tend to have a similar appearance to that shown in Figure
12. The original periodic orbits of the unswitched systems appear
as dark boundary curves in the attractor. The attractor crosses
expanding and contracting regions of phase space which can
be computed (for each value ofφ) by finding the curve on which
the divergence of the flow velocityWi ) (ŭi, V̆i) is zero. For the
current model,∇‚Wi ) 0 when

These curves are also shown in Figure 12 for the two values of
φ between which the system is switched.

We noticed (by examining a number of trajectories at different
parameter values) that switching events which occurred when
the two systems were in the lower left corner of the attractor
(boxed in Figure 12) tended to synchronize the two systems.
Even when trajectories start out far apart, they will eventually
transiently drift into phase, whether their parameters are identical

or not. In the former case, the drift is due to different effect of
switching in different regions of the attractor, sometimes slowing
and sometimes accelerating angular motion around the attractor.
If the parameters are different, the parameter difference also
causes phase drift because of the different periods of the two
oscillators. Figure 13 shows a detail of two trajectories which
experience a synchronizing switching event as they pass through
the boxed region in Figure 12. The two systems are initially
relatively far apart. Switching drives both systems deeper into
the region in which strong contraction occurs. (In fact, system
1 is initially outside the contracting region and gets driven back
in by the switching event.) Note that, because the parameters
are similar, all aspects of the overall dynamics (shape of
attractor, boundaries of contracting region, etc.) are similar for
the two systems. As a result of undergoing a relatively long
stay in the contracting region, the two systems are much more
nearly synchronized on exit from this region than they were
before switching.

To simplify the dynamics, we define a phase angleθ as shown
in Figure 12. Figure 14 shows the Euclidean distance between
the same two trajectories as those in Figure 13 plotted against

Figure 11. Time series of systems 1 (solid curve) and 2 (dashed line) withT- ) 1.1 andT+ ) 0.64. Other parameterValues are listed in section
3.1. Here Gaussian-distributed noise is added to the duration of the periodic forcing with noise strengthκ ) 0.05. Noise is switched on at t) 200.

Figure 12. Attractor of system 1 for the parameters of Figure 7 (limit
cycle to limit cycle switching) andκ ) 0. The dashed curve is the
boundary separating the contracting (C) and expanding (E) regions of
phase space forφ ) 0.01. The dotted curve is the contracting to
expanding boundary forφ ) 0.05. Synchronization is associated with
switching while both systems are passing through the boxed region, in
which the system passes from a strongly contracting to the expanding
region of phase space. The figure also shows the definition of the phase
angleθ.

Figure 13. Trajectories experiencing switching events in the boxed
region of Figure 12 with parameters set as those in Figure 7, with
dichotomous switching of strengthκ ) 0.12. The solid curve corre-
sponds to the trajectory for system 1; the dashed curve is for system 2.
The photochemical bromide production is switched from the low (φ )
0.01) to the high (φ ) 0.05) value, causing the first sharp turn in each
of the two trajectories. The boundary of the expanding region
simultaneously moves from the dash-dot curve to the dotted curve.
(These curves are drawn for the parameters of system 1. The
corresponding curves for system 2 are very near those of system 1.)
The transients move the two systems deep into the contracting region.
In fact, system 1, which was initially out of the contracting region,
gets pulled back in by the switching event.

Vi ) 1
fi{((1 - 2ui - εi)(qi + ui)

2

2qi
) - φ}
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the phase angle of system 1 for a full circuit around the attractor.
Passage of the two systems through expanding and contracting
regions of phase space appear respectively as regions of positive
and negative slope in this figure. The second switch from low
to highφ in Figure 14 (corresponding to the sharp cusp in the
trajectory segments in Figure 13) interrupts the increase ind
and in fact causes a sharp decrease in this statistic. Repeated
events of this nature eventually cause synchronization. Note that
similar events occurring at angles near the first minimum in
the d(θ1) curve can also contribute to synchronization but are
much less important for two reasons: First, this minimum is
much more narrow than the second one, which means that the
window of angles at which switching will assist synchronization
is much smaller in the region of the first minimum. Second,
the divergence is much less negative in the region of the first
minimum than it is near the second, meaning that the contraction
in the former region is much weaker.

In the chaotic (smallκ) case, these synchronizing events still
occur, as it will happen from time to time that both systems
pass through the appropriate region simultaneously and experi-
ence a switching event there. However, the pattern of switching
events is such that it is likely that the two systems will
subsequently wander away from each other. Clearly, noise in
the switching times alters this pattern in some significant way.
To understand this further, we construct a Poincare´ map by
recording the phase anglesθi at which switching from the low
to the high value ofφ occurs over a long trajectory. Then we
construct a return map by plottingθi+1 vs θi. Figure 15 shows
return maps for the purely deterministic system (κ ) 0) as well
as for systems in which the switching times are subjected to
dichotomous or Gaussian noise. The map corresponding to the
deterministic system (panel a) has some steeply sloped sections
which are responsible for the chaotic behavior because small
differences inθi result in large differences inθi+1. Moreover,
trajectories which pass through the synchronizing region (the
box in Figure 12, corresponding to the phase angles delimited
by dotted lines in Figure 15) always take at least two steps of
the map before returning to this region. As we increase the noise

amplitude, several things happen. First, the map becomes
multivalued. In the dichotomous case (Figure 15b), the map
consists of a series of curves due to the discrete nature of the
noise process. In the Gaussian case (Figure 15c), simple
spreading is observed. In addition, some of the gaps in the
original map are filled in, indicating that switching occurs more
uniformly over the attractor with noise than without. This results
in an increase in the number of ways the system can reach the
region favorable to synchronization. Finally, at sufficiently large
noise amplitudes, trajectories can visit the synchronization region
in two successive cycles (points in panels b and c in the central
square). Such events, although rare, greatly enhance the rate at
which the systems becomes synchronized.

Figure 14. Euclidean distance between the two systems in phase space
(d) vs phase angle of system 1 (θ1) for the same realization of the
noise process as in Figure 13. The expanding and contracting regions
of phase space can clearly be seen in this graph as regions of positive
and negative slope, respectively. Switching events are denoted by
arrows. The first pair of switching events is very short and occurs in
the wrong region of phase space to have much effect on the dynamics.
The second shift up inφ (an alternative view of which is shown in
Figure 13) forestalls reinjection of the trajectories into the expanding
region and leads to a sharp decrease ind. The dotted lines delimit the
region in which switching events tend to be particularly effective for
synchronization (the boxed region of Figure 12).

Figure 15. Return maps for (a)κ ) 0, (b)κ ) 0.12 with dichotomously
varied switching times, and (c)κ ) 0.12 for a system with Gaussian
variability in its switching times. The parameters are set as those for
system 1 in Figure 7. The dotted lines indicate the phase angle range
corresponding to the boxed region in Figure 12.
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Note that, although we have concentrated on the case of
oscillatory-to-oscillatory switching in this section, the situation
in the excitable to oscillatory case is qualitatively identical.

Discussion and Conclusions

In this study, we have shown the feasibility of synchronizing
two chemical systems operating under slightly different condi-
tions. This is an important demonstration because we can in
general expect small quantitative differences between any two
chemical reactors of similar design. Perfect phase synchroniza-
tion can be achieved when the two driven systems are switched
between two limit cycles or between excitable and oscillatory
states. When there exist large differences betweenq1 andq2 or
betweenε1 andε2, it becomes very difficult to find a periodic
forcing regime in which both systems exhibit complex oscil-
lations. We have checked the above results with other combina-
tions of T+c and T-c, ε1 and ε2, andq1 and q2. Qualitatively,
the same results are obtained. When random variations are added
to the durations of the forcing, the noise strengthκ is limited
by the values ofT+ andT-; that is, 2κ must be no larger than
T+ or T-. In the case thatT- (or T+) is too small, perfect phase
synchronization cannot be achieved because of this limitation
of the noise strength. However, larger noise strengths can be
used if we limit random variation to the larger of the two phases
(T+ or T-). Synchronization can still be obtained if only one of
the two durations is variable, as discussed elsewhere.19

We have also briefly studied the effect of additive noise in
the rate equations to represent the inherent fluctuations in
chemical reactors (e.g., fluctuations in pumping rates). These
additive noise terms were generated independently for the two
systems to be synchronized. We have found that the synchro-
nization properties described in this paper are robust with respect
to this additional source of stochasticity.

The phase difference between the two systems varies in time
in the chaotic region, whereas it remains constant in the
nonchaotic region. We find that the noise strength has to be
above a threshold to obtain perfect phase synchronization,
suggesting that shifting the two systems out of the chaotic region
plays an important role here. For Gaussian-distributed noise,
the noise process can generate a sequence of small numbers.
When this happens, the two driven systems will return momen-
tarily to the chaotic region. The sensitive dependence property
of chaos will then cause a loss of synchronization until larger
fluctuations shift the two systems out of the chaotic region again.
This in part explains why dichotomous noise of smaller strength
than in the Gaussian case can be used to achieve phase
synchronization.

Noise-induced transitions between attractors have been
observed in a number of contexts.60-65 In our study, the rate of
transitions between a synchronized and an unsynchronized (or
simply lag-synchronized) state can be controlled through the
statistical properties of the fluctuations (noise strength, correla-
tion, etc.). Higher noise strengths tend to favor synchronization,
whereas correlated noise processes generally enhance the
transition rate. Noise-induced transitions can sometimes be
exploited for practical purposes. For instance, Hasty and co-
workers have demonstrated that bistable genetic networks can
be switched between on and off states by short noise pulses.65

It has been suggested11,24 that perfect phase synchronization
cannot be achieved among periodically driven chaotic systems
because the phases in those systems are not free. This study,
together with earlier studies,1,19 suggests that the introduction
of random variation in the duration of the periodic forcing can
overcome the above problem to eventually build up phase

synchronization among (nearly) periodically driven systems.
Noise-induced coherent motion has been observed in a variety
of studies.16,17,56 This contribution further demonstrates the
constructive role which can be played by noise. The results also
illustrate that adding random variability to theduration of the
forcing phases is a powerful complement to the traditional way
of perturbing theintensityof external forcing, in particular when
the intensity can only be varied within a narrow range. The
above results also indicate that dichotomous noise is more
effective than Gaussian distributed noise in obtaining a syn-
chronized state because it requires smaller noise strength for
successful synchronization.

The explanation of the synchronization mechanism presented
in section 3.4 is incomplete. After attempting many other styles
of explanation however, we have come to the conclusion that
explanations of synchronization in randomly switched systems
require an analysis of the behavior in phase space, either
directly1 or in a suitably constructed Poincare´ map, as we have
done here. The Poincare´ maps of Figure 15 reduce the dynamics
to a circle map, suggesting that further insight might be obtained
by seeking similar phenomena in analytic circle maps such as
the sine map,66 an avenue of investigation which we are
currently pursuing.
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